Tamron 24mm f/2.8 Di III OSD M1:2 Lens Review

Tamron 24mm f/2.8 Di III OSD Lens
In-Depth Review

Tamron announced three similar close-focusing compact wide-angle prime lenses in a single announcement and this is the second of the three lenses to hit the streets. As I said in the 35mm f/2.8 Di III OSD Lens review, Tamron has been turning heads with their recently-introduced Di III mirrorless camera lenses, introducing one attractively-priced, impressive-performing lens after another. This lens meets the expectations set by its predecessors, providing nice image quality from a compact, lightweight package with a low price.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Top View

Focal Length

Back to Top

The focal length range (or individual focal length for a prime lens) is a primary consideration for a lens purchase or selection for use. Focal length matters greatly because it drives subject distance choices with perspective determined by those distances.

Landscape photography is a perfect use for a 24mm lens. This focal length is quite wide and can allow an entire scene to remain in focus, but 24mm is not so wide that it complicates composition and not so wide that it makes distant details (such as mountains) tiny. A high percentage of my landscape images have been captured at 24mm.

Architectural photography, large product photography, interior photography, birthday parties ... are just a few uses for 24mm. This is a great focal length to leave mounted for documenting life in general.

Wedding and event photography often utilize a wide-angle lens for capturing the large scene, for environmental-type portraits and for group portraits including in tight spaces. Even groups of your largest subjects will fit in the frame.

Photojournalist's needs are often similar to those of a wedding photographer and can also make use of 24mm. Videographers often find the 24mm focal length to be just right for their needs.

While telephoto lenses are more frequently used for sports, a 24mm angle of view allows a different perspective on these events. This focal length can be used to capture the big picture of the venue, overhead shots of the athletes and their coaches being interviewed after the game, and, when access permits, full-body environmental action sports photos showing lots of venue in the background. Note that when used for action sports with a rapidly approaching subject, a 24mm angle of view makes the capture of the perfect pose at the perfect framing distance challenging due to the subject changing size in the frame rapidly at short distances.

The 24mm example was at the wide end of the focal length angle of view illustration I used for the 35mm lens version:

Focal Length Range Example

24mm | 35mm | 50mm | 70mm | 85mm | 105mm

When used on an ASP-C/1.5x FOVCF sensor format camera, this lens's angle of view is similar to that of a 36mm lens on a full-frame camera, practically the same as the hugely-popular 35mm angle of view. While many of the uses for this AOV remain the same as for 24mm, the narrower angle of view obviously requires more distance for the same subject framing and the longer distance changes the perspective modestly. The full-frame 35/36mm angle of view is typically favored over 24mm for portrait photography.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Front View

Max Aperture

Back to Top

All three of the simultaneously-announced Tamron Di III primes feature an f/2.8 aperture. An f/2.8 max aperture is relatively wide and few zoom lenses covering this focal length range have wider apertures with kit lenses typically having considerably narrower 24mm apertures. While there are many 24mm prime lenses, few have a narrower max aperture (mostly tilt-shift lenses). So, this lens opens wide relative to zoom lenses and not wide relative to prime lenses, part of the formula required for the ultra-light weight and tiny size.

Use a wider aperture to stop action in less light and enable handholding in similarly-lower light levels. In addition to allowing more light to reach the sensor, permitting faster shutter speeds and/or lower ISO settings, increasing the aperture opening permits a stronger, better subject-isolating background blur at this focal length.

The following aperture comparison example takes a closer look at the background blur aspect.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Aperture Comparison Example

When viewed at full size, the differences appear stronger. Compare the widest 24mm aperture currently available in your kit with f/2.8.

Wide-angle lenses cannot blur the background like telephoto lenses and with many 24mm options having a 2-stop-wider aperture available, this lens cannot blur the background as well as some other 24mm prime lens options. With an extremely short minimum focusing distance assisting, this lens is able to produce a strong blur relative to its available max aperture. This is the maximum background blur this lens can produce:

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Maximum Blur Example

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Side View with Hood

Image Stabilization

Back to Top

This lens is not optically stabilized, but with current Sony E-mount full-frame cameras, Sony generally takes care of that omission with Steady Shot or IBIS (In-Body Image Stabilization). On a traditional DSLR with an optical viewfinder, IBIS results in an unstabilized view, meaning that stabilization was not helpful for composition or for providing a still subject to the camera's AF system. With EVFs being prevalent in Sony's lineup, the viewfinder image is being read from the imaging sensor and that is stabilized. Therefore, the viewfinder image is nicely stabilized and sensor-based AF takes advantage of the stabilized view for improved accuracy.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Side View

Image Quality

Back to Top

We have established that this lens is not close to class-leading in regards to its max aperture opening. Generally expected is that lenses are not as sharp at their wide-open apertures as they are when stopped down one or two stops. A moderately wide max aperture lens that needs stopped down for adequate sharpness is significantly less versatile. Fortunately, this lens is sharp wide-open and the primary reason to stop down is to gain depth of field.

In the center of the frame, this lens is sharp at f/2.8 and with some contrast and resolution increase at f/4, it becomes razor sharp. In general, lenses are not as sharp in the periphery where light rays must be bent more strongly than they are in the center. While this lens fits that description, the difference is quite minimal. This lens has good full-frame corner sharpness at f/2.8, stopping down to f/4 brings on really nice corner sharpness, and extreme corners are impressive at f/5.6.

I'll next share some real-world examples. Below you will find sets of 100% resolution center of the frame crops captured in uncompressed RAW format using a Sony a7R III. The images were processed in Capture One using the Natural Clarity method with the sharpening amount set to only "30" on a 0-1000 scale (Note that images from most cameras require some level of sharpening but too-high sharpness settings are destructive to image details and hide the deficiencies of a lens).

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Sharpness Comparison Example

You will need to look carefully to see the difference between f/2.8 and f/4. Based on the center of the frame performance, this lens strongly invites use of the wide-open aperture.

In some lens designs, the plane of sharp focus can move forward or backward as a narrower aperture is selected. This is called focus shift (residual spherical aberration or RSA), it is seldom (never?) desired, and this lens does not exhibit such (many modern lenses automatically correct for it).

Next, we'll look at a pair of comparisons showing 100% extreme-top-left-corner crops captured and processed identically to the above center-of-the-frame images. These images were manually focused in the corner of the frame.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Corner Sharpness Comparison Example

The resolution of the f/2.8 crops is really good and with contrast improving at narrower apertures, this lens is remarkably sharp by f/5.6.

Obviously, some peripheral shading shows in the wide-aperture corners — as expected. Expect about 3 stops of vignetting in the corners at f/2.8. Stop down one stop and about 1 stop of shading clears. By f/8, about 1.5 stops of shading is present in the corners and little further reduction is realized through the balance of the aperture range.

APS-C format cameras using lenses projecting a full-frame-sized image circle avoid most vignetting problems. In this case, the about-1-stop of shading showing at f/2.8 might be visible in images with a solid color (such as a blue sky) showing in the corners.

One stop of shading is the amount often used as the visibility number, though subject details provide a widely-varying amount of vignetting discernibility. Vignetting can be corrected during post-processing with increased noise in the brightened areas being the penalty or it can be embraced, using the effect to draw the viewer's eye to the center of the frame.

The effect of different colors of the spectrum being magnified differently is referred to as lateral (or transverse) CA (Chromatic Aberration). Lateral CA shows as color fringing along lines of strong contrast running tangential (meridional, right angles to radii) with the mid and especially the periphery of the image circle showing the greatest amount as this is where the greatest difference in the magnification of wavelengths typically exists.

With the right lens profile and software, lateral CA is often easily correctable (often in the camera) by radially shifting the colors to coincide though it is always better to not have the problem in the first place. Any color misalignment present can easily be seen in the site's image quality tool, but let's also look at a worst-case example, a 100% crop from the extreme top left corner of a high-resolution Sony a7R III frame showing diagonal black and white lines.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Lateral Chromatic Aberration Example

There should be only black and white colors in these images and the additional colors are showing the presence of lateral CA. That is a moderate amount of color separation, especially for a prime lens.

A relatively common lens aberration is axial (longitudinal, bokeh) CA, which causes non-coinciding focal planes of the various wavelengths of light, or more simply, different colors of light are focused to different depths. Spherical aberration along with spherochromatism, or a change in the amount of spherical aberration with respect to color (looks quite similar to axial chromatic aberration but is hazier) are other common lens aberrations to look for. Axial CA remains at least somewhat persistent when stopping down with the color misalignment effect increasing with defocusing while the spherical aberration color halo shows little size change as the lens is defocused and stopping down one to two stops generally removes this aberration.

In the real world, lens defects do not exist in isolation with spherical aberration and spherochromatism generally found, at least to some degree, along with axial CA. These combine to create a less sharp, hazy-appearing image quality at the widest apertures.

In the examples below, look at the fringing colors in the out of focus specular highlights created by the neutrally-colored subjects. Any color difference is being introduced by the lens.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Spherical and Axial Aberration Example

Again, this is a moderate, though not unusual, amount of color separation.

Flare and ghosting are caused by bright light reflecting off of the surfaces of lens elements, resulting in reduced contrast and sometimes-interesting artifacts. Tamron uses BBAR (Broad-Band Anti-Reflection) Coating to minimize these effects and the low 10/9 elements/groups count is especially helpful for this lens. Even with the sun in the corner of the frame and the aperture stopped down to f/16, this lens creates minor flare effects.

Flare effects can be embraced, avoided, or removal can be attempted. Removal is sometimes challenging.

There are two lens aberrations that are particularly evident when shooting images of stars, mainly because bright points of light against a dark background make them easier to see. Coma occurs when light rays from a point of light spread out from that point, instead of being refocused as a point on the sensor. Coma is absent in the center of the frame, gets worse toward the edges/corners, and generally appears as a comet-like or triangular tail of light which can be oriented either away from the center of the frame (external coma), or toward the center of the frame (internal coma). Coma clears as the aperture is narrowed. Astigmatism is seen as points of light spreading into a line, either sagittal (radiating from the center of the image) or meridional (tangential, perpendicular to sagittal). Remember that lateral CA is another aberration apparent in the corners.

The image below is a 100% crop taken from near the top-right corner of an a7R III frame.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Coma

The stars in this sample look quite good, especially relative to what we commonly see at 24mm.

Our distortion test result screams "Correction required!" The amount of barrel distortion this lens shows is extreme, approaching fisheye lens proportions and, uncorrected, the geometric distortion is going to be obvious when straight lines are placed in the periphery of the frame. Most modern lenses have lens correction profiles available for the popular image processing software (or in-camera) and distortion can be easily removed using these, but geometric distortion correction requires stretching which is detrimental to image quality. Some portion of the image must be stretched or the overall dimensions must be reduced. It appears that Tamron is expecting the correction option to be taken for this lens.

The amount of blur a lens can produce is easy to show (and was shown earlier in the review). Assessing the quality is a much harder challenge due in part to the infinite number of variables present in all available scenes. I'll first share a pair of 100% crop f/11 (for aperture blade interaction) examples.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Bokeh Example

f/11 | f/11 | f/11 | f/11

In the first example, the defocused highlight fill is relatively smooth and the aperture blades appear to be closing evenly. The second shows an anomaly, a small portion of the frame repeatably rendering large circular shapes in the defocused highlights. The last two examples are full images reduced in size. These also look good.

With the exception of a small number of specialty lenses, the wide aperture bokeh in the corner of the frame does not produce round defocused highlights with these effects taking on a cat's eye shape due to a form of mechanical vignetting. If you look through a tube at an angle, similar to the light reaching the corner of the frame, the shape is not round and that is the shape seen in the corners. The example below shows the top-left quarter of the frame.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Cat's Eye Bokeh Example

As the aperture narrows, the entrance pupil size is reduced and the mechanical vignetting absolves with the shapes becoming round.

With a 7-blade count aperture, point light sources captured with a narrow aperture setting and showing a sunstar effect will have 14 points, as illustrated in the f/16 example below.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Sunstar Effect Example

My preference is for single-flaring points, but this result is still looking good. The f/22 star still has the double-flaring points but they are closer together. I find the effects of diffraction to usually be too strong at f/22.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Design

In summary ... this lens's most prominent image quality shortcoming is the strong barrel distortion. It also shows a moderate amount of color separation and vignetting does not completely resolve without correction. However, it is the Tamron 24mm f/2.8 Di III OSD M1:2 Lens's excellent sharpness that will have photographers overlooking those other aspects.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens on Tripod


Back to Top

Like its same-time-introduced siblings, this lens's AF system is powered by Tamron's "OSD" "Optimized Silent Drive" stepping motor. As discovered with the 35mm lens, this is not my favorite AF system.

Testing on the Sony a7R IV, this lens focuses relatively quickly and relatively quietly (light clicks and the motor are heard) in AF-C continuous focus mode. In AF-S single shot focus mode, focusing becomes slow with hunting being common before the camera locks focus and an audible click can be heard with each direction change. As with its 35mm sibling, the focus speed is adequate for most uses for this lens and short focus distance changes happen faster than long ones.

Especially in AF-S mode, expect to hear some light clicking and, primarily with long focus distance adjustments, light buzzing during AF.

Note that this lens is not the best low-light-autofocus performer, taking a long time to lock focus — if that even happens.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Angle View at Minimum Focus Distance

While this lens does not change overall size during focusing, it is a front-focusing model and the front element extends a significant amount inside the lens barrel as illustrated above.

AF accuracy is always paramount and this lens performs well in this regard.

Normal is for the scene to change size in the frame (sometimes significantly) as focus is pulled from one extent to the other, referred to as focus breathing, a change in focal length resulting from a change in focus distance. Focus breathing negatively impacts photographers intending to use focus stacking techniques, videographers pulling focus, and anyone critically framing while adjusting focus. While this lens shows a significant amount of focus breathing, keep in mind that it also focuses closely, providing a high maximum magnification.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Focus Magnification Example

FTM (Full Time Manual) focusing is supported via Sony's DMF (Direct Manual Focus) AF mode. This lens does not have an AF/MF switch, meaning that a camera setting change is required to switch modes. I miss the switch.

The plastic-ribbed focus ring is reasonably large and easily tactilely distinguishable from the balance of the lens barrel. This ring is smooth and has a nice amount of resistance. This is a variable response MF ring. Turn it quickly and about 530° (long for the fast speed) of rotation will complete the full extent focus adjustment. When turned slowly, about 5 full rotations (a crazy 1,755°) are required to make a full range focus distance adjustment, allowing precise manual focusing even at close distances. Annoying is the lag and distance adjustment jump encountered when changing ring directions, making manual focusing more challenging than it should be. The scene moving around slightly during focusing is similarly annoying (if watching closely).

Tamron does not provide focus distance information on the lens, such as in a window, but this information is available in the Sony viewfinder and rear LCD.

With a 4.7" (119mm) minimum focus distance, this lens has an impressive best-in-class 0.50x maximum magnification spec.

There are few identically-specced lenses, so I'll expand the criteria used for this selection, staying within the full-frame boundary:

ModelMin Focus Distance "(mm)Max Magnification
Canon EF 24mm f/1.4L II USM Lens9.8(250)0.17x
Canon EF 24mm f/2.8 IS USM Lens7.9(200)0.23x
Nikon 24mm f/1.4G AF-S Lens9.8(250)0.18x
Nikon Z 24mm f/1.8 S Lens9.8(250)0.15x
Nikon 24mm f/1.8G AF-S Lens9.1(230)0.20x
Rokinon (Samyang) 24mm f/1.4 US UMC Lens9.8(250) 
Sigma 24mm f/1.4 DG HSM Art Lens9.8(250)0.19x
Sony FE 24mm f/1.4 GM Lens9.4(240)0.17x
Tamron 24mm f/2.8 Di III OSD Lens4.7(119)0.50x

A subject measuring approximately 2.8 x 1.9" (71 x 43mm) will fill the frame at the minimum focus distance. The yellow national park stamp in the image below measures 1.57" (398mm) in width.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Maximum Magnification Example

Need a shorter minimum focus distance and greater magnification? An extension tube mounted behind this lens should provide a significant decrease and increase respectively. Extension tubes are hollow lens barrels that shift a lens farther from the camera, which permits shorter focusing distances at the expense of long-distance focusing. Sony and Tamron do not publish extension tube specs nor do they manufacture these items, but third-party Sony-mount extension tubes are available. Note that at minimum focus distance, there is only about 1.4" (36mm) of working space in front of the sans-hood lens and likely only short extension tubes would be usable with subject lighting becoming challenging. The shadowing caused by the end of the lens can be seen in the previous example.

This lens is not compatible with Tamron or Sony teleconverters.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Front View on Camera

Build Quality & Features

Back to Top

For so many years, I wondered why low-cost items were required to look ugly. We're in good times and this inexpensive lens certainly qualifies as low cost yet it looks nice. Tamron's current lens designs, featuring a matte black finish and white printing in a modern font, are visually attractive. In addition, their lenses are physically comfortable to use and have a quality feel.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Product Images

MFD |    w/ Hood:  MFD |   Rotated   Compare »

The exterior lens barrel features quality plastic construction. Tamron emphasizes that this lens was "Designed in Japan" but in fine print admits that it was "Made in Vietnam".

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Mount

This lens has moisture resistance incorporated into its design, including a mount gasket seal.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Weather Sealing

"The front surface of the lens element is coated with a protective fluorine compound that is water- and oil-repellant. The lens surface is easier to wipe clean and is less vulnerable to the damaging effects of dirt, dust, moisture and fingerprints." [Tamron]

Tamron indicates that this lens "... is compatible with many of the advanced features that are specific to mirrorless cameras." These features include hybrid AF, Eye AF, Direct Manual Focus (DMF), in-camera lens correction (shading, chromatic aberration, distortion), and camera-initiated lens firmware updates.

This is a small, extremely light lens. It is a joy to carry for even a long time.

ModelWeight oz(g)Dimensions w/o Hood "(mm)FilterYear 
Canon EF 24mm f/1.4L II USM Lens22.9(650)3.3 x 3.4(83.5 x 86.9)772008
Canon EF 24mm f/2.8 IS USM Lens9.9(280)2.7 x 2.2(68.4 x 55.7)582012
Nikon 24mm f/1.4G AF-S Lens21.9(620)3.3 x 3.5(83.0 x 88.5)772010
Nikon Z 24mm f/1.8 S Lens15.9(450)3.1 x 3.8(78.0 x 96.5)722019
Nikon 24mm f/1.8G AF-S Lens12.5(355)3.1 x 3.3(77.5 x 83.0)722015
Rokinon (Samyang) 24mm f/1.4 US UMC Lens19.4(550)3.3 x 3.7(83.0 x 95.0)772012
Sigma 24mm f/1.4 DG HSM Art Lens23.5(665)3.3 x 3.6(85.0 x 90.2)772015
Sony FE 24mm f/1.4 GM Lens15.7(445)3.0 x 3.6(75.4 x 92.4)672018
Tamron 24mm f/2.8 Di III OSD Lens7.6(215)2.9 x 2.5(73.0 x 63.5)672019

For many more comparisons, review the complete Tamron 24mm f/2.8 Di III OSD M1:2 Lens Specifications using the site's lens specifications tool.

Visual size comparisons are always useful, though selecting which lenses to visually compare gave me pause in this case.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Compared to Similar Lenses

This example shows a Canon DSLR equivalent and Tamron's 28-70mm zoom simply for reference.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Compared to Similar Lenses with Hoods

Use the site's product image comparison tool to visually compare the Tamron 24mm f/2.8 Di III OSD M1:2 Lens to other lenses.

This lens has 67mm filter threads. 67mm filters are medium in size, modest in cost, and common in popularity. Extremely convenient is that many of Tamron's recently introduced Di III lenses use the 67mm filter size, permitting one set of effects filters to be shared by all lenses in a Di III kit without the need for step-up filter adapter rings.

We are seeing a slight increase in peripheral shading when using a standard thickness circular polarizer filter; therefore, a slim model such as the Breakthrough Photography X4 is suggested.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Angle View with Hood

Tamron always includes the hood. The bayonet-mount rigid molded plastic petal-shaped Tamron HF050 hood is rather small. The protection it offers from bright light and impact is not huge but it is still worth using this hood. Its compactness is nice.

Tamron does not include a case with this lens. Consider a small Lowepro Lens Case for single-lens storage, transport, and carry.

Lens caps are a very-frequently-used accessory and Tamron's have long been great.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Cap

Price, Value, Compatibility

Back to Top

Tamron's name has been synonymous with good value and this lens is that. Just like its 35mm sibling, the nicely-designed Tamron 24mm f/2.8 Di III OSD Lens provides great image quality for a bargain-grade price.

Tamron's Di III lenses are designed for use on mirrorless interchangeable lens cameras. At review time, the Tamron 24mm f/2.8 Di III OSD Lens specifically is compatible with all Sony E-mount cameras, including both full-frame and APS-C sensor format models.

"This product is developed, manufactured and sold based on the specifications of E-mount which was disclosed by Sony Corporation under the license agreement with Sony Corporation." [Tamron] Tamron provides a 6-year limited warranty.

The reviewed Tamron 24mm f/2.8 Di III OSD Lens was online-retail sourced.

Tamron 24mm f/2.8 Di III OSD M1:2 Lens Top View with Hood


Back to Top

A lot of photographers are going to take the Tamron 24mm f/2.8 Di III OSD Lens up for its value proposition. This little ultra-light lens delivers excellent image sharpness, especially for the price.

What are this lens's shortcomings? Very strong barrel distortion is at the top of my list. Some color separation and vignetting that does not completely resolve even at the narrowest apertures are additional image quality limitations.

The autofocus system is this lens's biggest physical weakness. Related is that the manual focus distance adjustment jumps when changing focus ring direction, making manual focusing more challenging than it should be.

The f/2.8 aperture isn't so wide for a 24mm prime lens, but that max aperture opening is part of the small, light, and inexpensive formula. Like the rest of the Tamron Di III lenses I've reviewed, this one's light weight does not exude rugged build quality confidence, but this lens seems nicely built with tight tolerances and it looks great. A long warranty indicates that Tamron expects the lens to hold up for a long time.

The 24mm f/2.8 Di III OSD Lens is yet another great Tamron deal.

Bringing you this site is my full-time job (typically 60-80 hours per week). Thus, I depend solely on the commissions received from you using the links on this site to make any purchase. I am grateful for your support! - Bryan

Can you help right now?

This site and my family depend on your support.
Please share this page!

Share on Facebook! Share on X! Share on Pinterest! Email this page to a friend!

Tamron 24mm f/2.8 Di III OSD Lens
Tamron 24mm f/2.8 Di III OSD Lens
Share on Facebook! Share on X! Share on Pinterest! Email this page to a friend!
Can we stay in touch?Free Newsletter
Bryan Recommends Buying It Here
Any purchase made after using this link provides support for this site Any purchase made after using this link provides support for this siteAs an Amazon Associate, I earn from qualifying purchases.
Any purchase made at WEX Photographic after using this link provides support for this siteAny purchase made at Camera Canada after using this link provides support for this site
Any purchase made at KEH after using this link provides support for this siteAny purchase made at MPB after using this link provides support for this site
Terms of Use, Privacy  |  © 2024 Rectangular Media, LLC  |  Bryan CarnathanPowered by Christ!